Abstract
Whilst the interplay between host genetics and the environment plays a pivotal role in the aetiopathogenesis of cancer, there are other key contributors of importance as well. One such factor of central and growing interest is the contribution of the microbiota to cancer. Even though the field is only a few years old, investigation of the ‘cancer microbiome’ has already led to major advances in knowledge of the basic biology of cancer risk and progression, opened novel avenues for biomarkers and diagnostics, and given a better understanding of mechanisms underlying response to therapy. Recent developments in microbial DNA sequencing techniques (and the bioinformatics required for analysis of these datasets) have allowed much more in-depth profiling of the structure of microbial communities than was previously possible. However, for more complete assessment of the functional implications of microbial changes, there is a growing recognition of the importance of the integration of microbial profiling with other omics modalities, with metabonomics (metabolite profiling) and proteomics (protein profiling) both gaining particular recent attention. In this review, we give an overview of some of the key scientific techniques being used to unravel the role of the cancer microbiome. We have aimed to highlight practical aspects related to sample collection and preparation, choice of the modality of analysis, and examples of where different omics technologies have been complementary to each other to highlight the significance of the cancer microbiome.
Highlights
The past few years have been associated with a surge of interest in the potential contribution of the microbiota to a number of human diseases, including a wide range of cancers [1]
We will give a summary of some popular omics technologies available to researchers as they apply to cancer microbiome research
This is because shotgun metagenomics sequences most of the genes present in the sample, in contrast to metataxonomic sequencing which only targets part of the 16S rRNA gene
Summary
The past few years have been associated with a surge of interest in the potential contribution of the microbiota to a number of human diseases, including a wide range of cancers [1]. The streamlining of protocols for the optimal collection and processing of samples from mucosal sites—coupled with the rapid refinement of culture-independent techniques for profiling the microbiota from these samples—has meant that microbial profiling has become an area of focus for clinicians and scientists engaged in cancer research. One central recurring question in cancer microbiome research is regarding the mechanisms of interaction between the microbiota and the host, and the role of specific metabolites and proteins appears to be key [1]. In addition to microbial profiling, the use of other omics technologies—in particular, metabonomics and proteomics—contributes highly to understanding the functional implications of microbiome changes. We will give a summary of some popular omics technologies available to researchers as they apply to cancer microbiome research (metataxonomics, metagenomics, metabonomics and metaproteomics)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.