Abstract

Array languages such as Fortran 90, HPF and ZPL have many benefits in simplifying array-based computations and expressing data parallelism. However, they can suffer large performance penalties because they introduce intermediate arrays---both at the source level and during the compilation process---which increase memory usage and pollute the cache. Most compilers address this problem by simply scalarizing the array language and relying on a scalar language compiler to perform loop fusion and array contraction. We instead show that there are advantages to performing a form of loop fusion and array contraction at the array level . This paper describes this approach and explains its advantages. Experimental results show that our scheme typically yields runtime improvements of greater than 20% and sometimes up to 400%. In addition, it yields superior memory use when compared against commercial compilers and exhibits comparable memory use when compared with scalar languages. We also explore the interaction between these transformations and communication optimizations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.