Abstract

Abstract Aims Global change factors (e.g. warming and nitrogen deposition) may influence biological invasions, but how these factors may influence the performance of invasive species and further mediate the interactions with native competitors remain still unknown. Methods Here, we conducted a 5-month greenhouse experiment to examine the effects of warming (using open-top chambers, +0.62°C) and N addition (adding NH4NO3 at a rate of 4.2 g m−2) on the performance of the native and invasive populations of an invasive species Plantago virginica in competition with a native Plantago asiatica. Important Findings Under warming treatment and its interaction with nitrogen addition treatment (W × N), invasive and native populations of P. virginica had different biomass allocation strategies to compete with native competitor P. asiatica. Native population of P. virginica (PV-Na) increased more below-ground biomass, whereas those from the invasive population (PV-In) increased more above-ground biomass. We also found that invasive species P. virginica had stronger responses to warming and N addition than the native species P. asiatica. The competitive ability of the invasive plants was significantly reduced by warming which indicated that the invasive plant were much stronger sensitivity to elevated temperature than native plant. Similarly, N addition and W × N reduced the competitive response of PV-In in below-ground biomass, but increased the competitive response of PV-Na in above-ground and total biomass when they grew with the P. asiatica. The results show that P. virginica have occurred differential biomass allocation strategies during its invasions and invasive population exhibit flexible competition ability to adapt to environmental changes (especially warming). These findings may potentially help to predict plant invasions and make management strategies in a world with changing climate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.