Abstract

Summer weather extremes (e.g., heavy rainfall, heat waves) in China have been linked to anomalies of summer monsoon circulations. The East Asian subtropical westerly jet (EASWJ), an important component of the summer monsoon circulations, was investigated to elucidate the dynamical linkages between its intraseasonal variations and local weather extremes. Based on EOF analysis, the dominant mode of the EASWJ in early summer is characterized by anomalous westerlies centered over North China and anomalous easterlies centered over the south of Japan. This mode is conducive to the occurrence of precipitation extremes over Central and North China and humid heat extremes over most areas of China except Northwest and Northeast China. The centers of the dominant mode of the EASWJ in late summer extend more to the west and north than in early summer, and induce anomalous weather extremes in the corresponding areas. The dominant mode of the EASWJ in late summer is characterized by anomalous westerlies centered over the south of Lake Baikal and anomalous easterlies centered over Central China, which is favorable for the occurrence of precipitation extremes over northern and southern China and humid heat extremes over most areas of China except parts of southern China and northern Xinjiang Province. The variability of the EASWJ can influence precipitation and humid heat extremes by driving anomalous vertical motion and water vapor transport over the corresponding areas in early and late summer.摘要东亚副热带西风急流是影响中国极端天气的重要原因之一, 然而之前的研究主要关注整个夏季急流的变率, 对其早夏和晚夏变率的区别及其对极端天气的影响关注较少. 本文研究了早夏和晚夏东亚副热带西风急流季节内变化特征的区别, 以及这种区别带来的极端天气的差异及其可能的动力学机制. 研究结果表明, 相比于早夏, 晚夏急流季节内变化中心位置偏西偏北, 通过改变垂直运动和水汽输送可以影响极端降水和湿热浪在相应区域的发生概率.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call