Abstract

Carbon emissions increase the risk of climate change. As one of the primary sources of carbon emissions, road traffic faces a significant challenge in terms of reducing carbon emissions. Many studies have been conducted to examine the impacts of cities on carbon emissions from the perspectives of urbanization, population size, and economics. However, a detailed understanding of the relationship between road traffic and urban carbon emissions is lacking due to the lack of a reasonable set of road traffic metrics. Furthermore, there have been fewer studies that have conducted cluster analyses of the impact factors, which will be supplemented in this research. We established 10 impact metrics, including the highway network system, city road network system, public transit system, and land use system of streets and transportation, using 117 county-level cities in Hebei Province as the study area, which is one of the regions in China with the most acute conflicts between economic development and the environment. We built an ordinary least squares (OLS) model, a spatial lag model (SLM), a spatial error model (SEM), a spatial Durbin model (SDM), and a geographically weighted regression (GWR) model, and performed a cluster analysis on the key metrics. The results are as follows: (1) The difference in spatial distribution of urban land-average carbon emissions is obvious, highly concentrated in the areas surrounding Beijing and Tianjin. (2) The GWR model has a higher R2 and a lower AICc than global models (OLS, SLM, SEM, and SDM) and performs better when analyzing the impact mechanism. (3) Highway network density, city road length, and density of the public transit network have significant effects on urban land-average carbon emissions, whereas the street and transportation land use systems have no significant effect, which indicates that the highway network and public transit systems should be prioritized. (4) The GWR model results show that the impact of the four metrics on the urban land-average carbon emissions exhibits clear spatial heterogeneity with a significant piecewise spatial distribution pattern. The highway network density has a relatively large impact on the northern region. The northwest is more affected by the density of the public transit network. The southwest is most impacted by the length of city roads. (5) The study area is divided into four distinct characteristic areas: the highway network dominant impact area, the public transit dominant impact area, the city road network dominant impact area, and the multi-factor joint impact area. Different traffic optimization strategies are proposed for different areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.