Abstract

We investigated the impacts on buildings of three pyroclastic surges that struck three separate villages on 25 June, 21 September and 26 December, 1997, during the course of the andesitic dome building eruption of the Soufriere Hills Volcano, Montserrat, which began on 18 July, 1995. A detailed analysis of the building damage of the 26 December event was used to compare the findings on the flow and behaviour of dilute pyroclastic density currents (PDCs) with the classical reports of PDCs from historical eruptions of similar size. The main characteristics of the PDC, as inferred from the building damage, were the lateral loading and directionality of the current; the impacts corresponded to the dynamic pressure of the PDC, with a relatively slow rate of rise and without the peak overpressure or a shock front associated with explosive blast; and the entrainment of missiles and ground materials which greatly added to the destructiveness of the PDC. The high temperature of the ash, causing the rapid ignition of furniture and other combustibles, was a major cause of damage even where the dynamic pressure was low at the periphery of the current. The vulnerability of buildings lay in the openings, mainly windows, which allowed the current to enter the building envelope, and in the flammable contents, as well as the lack of resistance to the intense heat and dynamic pressure of some types of vernacular building construction, such as wooden chattel houses, rubble masonry walls and galvanised steel-sheet roofs. Marked variability in the level of damage due to dynamic pressure (in a range 1–5 kPa, or more) was evident throughout most of the impact area, except for the zone of total loss, and this was attributable to the effects of topography and sheltering, and projectiles, and probably localised variations in current velocity and density. A marked velocity gradient existed from the outer part to the central axis of the PDC, where buildings and vegetation were razed to the ground. The gradient correlated with the impacts due to lateral loading and heat transfer, as well as the size of the projectiles, whilst the temperature of the ash in the undiluted PDC was probably uniform across the impact area. The main hazard characteristics of the PDCs were very consistent with those described by other authors in the classic eruptions of Pelee (1902), Lamington (1951) and St Helens (1980), despite differences in the eruptive styles and scales. We devised for the first time a building damage scale for dynamic pressure which can be used in research and in future volcanic emergencies for modelling PDCs and making informed judgements on their potential impacts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.