Abstract

. Biofuels, which are widely used as alternative fuels to reduce fossil fuel consumption and replace them with fossil fuel-like energy sources, are increasingly being supplemented with nanoparticles (NP) to overcome their limitations, including lower energy content and higher emissions. The study aimed to examine the impact of Fe-Ni-TiO2/activated carbon (AC) nanoparticles, produced by the authors, on engine performance and emissions when added to diesel/biodiesel fuel blends. The produced Fe-Ni-TiO2/AC NP was employed as an additive in palm oil (PO)/diesel fuel blends at 50 and 100 ppm concentrations. The results revealed that compared to standard diesel, employing Fe-Ni-TiO2/AC NPs lowered emissions including smoke, carbon monoxide (CO), and hydrocarbon (HC) in all fuel blends while increasing nitrogen oxide (NOx). In the DNP30-100 fuel blend at 2500 W engine load, there was an increase in NOx by 8% and a decrease in CO, HC, and smoke emissions by 70.3%, 86.3%, and 57.5%, respectively, compared to standard diesel. Furthermore, a decrease of 11.38% was observed in brake-specific fuel consumption, while brake thermal efficiency increased by 16.59% compared to diesel. The overall results suggest that using Fe-Ni-TiO2/AC as an additive in a diesel–biodiesel fuel blend can improve engine performance and decrease emissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.