Abstract

Solar energy forecasting has seen tremendous growth by using weather and photovoltaic (PV) parameters. This study presents new approach that predicts solar energy production by using the scheduled, unscheduled maintenance activities and weather data. The dataset is obtained from the 1MW solar power plant of PDEU (our university), which has 12 structured columns and 1 unstructured column with manual text entries about different scheduled and unscheduled maintenance activities, and weather conditions on the daily basis. The unstructured column is used to create new features by using Hash-Map, flag words and stop words. The solar power generation forecasting is formulated as a vector auto regression (VAR) optimization problem and total power generation forecasting is presented with the results of four different cases. The results have shown that the root mean square percentage error (RMSPE) in total power generation forecasting is less than 10% for different lag (p) values. The vector auto regression can forecast the unscheduled maintenance activities like Grid failure, Inverter Failure, scheduled maintenance activity like module cleaning, weather activity like cloudy along with total power generation forecasting for effective and efficient management of solar power plants. The power generation decay is different for all the PV sets which show the variations in the impacts of weather, aging and maintenance on the solar power plant. This research work has proven that the peaks of total power generation forecasting and prediction can be tracked in a better way by using daily unscheduled, scheduled maintenance activities and weather conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call