Abstract

In a competitive electricity market, generation companies design bidding strategies to maximize their individual profits subject to the constraints imposed by bidding rules. For a generation company, obviously, the optimal bidding strategy and hence the potential of exercising market power may be different if different bidding rules are employed. Hence, a well-designed bidding protocol is vital to the effective and efficient operation of an electricity market. Based on the widely used stepwise bidding rules, the impacts of different numbers of bidding segments on the bidding strategies of generation companies are investigated. This study is focused on a price-taker generation company in an electricity market. A probabilisic model is used to simulate electricity price in the competitive market environment. With a given number of bidding segments, the optimal bidding strategy for a price-taker generation company is then developed. The effects of risk preferences as well as information asymmetry on the optimal bidding strategy are also examined. With particular references to the impacts of different numbers of bidding segments on the optimal bidding strategy, a numerical example is employed to demonstrate the validity of the proposed model and methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call