Abstract

AbstractBased on theory and climate model experiments, previous studies suggest most of the uncertainties in projected future changes in meridional energy transport and zonal mean surface temperature can be attributed to cloud feedback. To investigate how radiative and dynamical adjustments modify the influence of cloud-radiative changes on energy transport, this study applies a cloud-locking technique in a fully-coupled climate model, CESM. Under global warming, the impacts of cloud-radiative changes on the meridional energy transport are asymmetric in the two hemispheres. In the Northern Hemisphere, the cloud-radiative changes have little impact on energy transport, because 89% of the cloud-induced heating is balanced locally by increasing outgoing longwave radiation. In the Southern Hemisphere, on the other hand, cloud-induced dynamical changes in the atmosphere and the ocean cause enhanced poleward energy transport, accounting for most of the increase in energy transport under warming. Our experiments highlight that the local longwave radiation adjustment induced by temperature variation can partially offset the impacts of cloud-radiative changes on energy transport, making the estimated impacts smaller than those obtained from directly integrating cloud-radiative changes in previous studies. It is also demonstrated that the cloud-radiative impacts on temperature and energy transport can be significantly modulated by the oceanic circulation, suggesting the necessity of considering atmospheric-oceanic coupling when estimating the impacts of cloud-radiative changes on the climate system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.