Abstract

Silver mining in the early-1900s has left a legacy of arsenic-rich mine tailings around the town of Cobalt, in northeastern Ontario, Canada. Due to a lack of environmental control and regulations at that time, it was common for mines to dispose of their waste into adjacent lakes and land depressions, concentrating metals and metalloids in sensitive aquatic ecosystems. In order to examine what impacts, if any, these century-old, arsenic-rich mine tailings are having on present-day aquatic ecosystems, we sampled diatom assemblages in lake surface sediment in 24 lakes along a gradient of surface water arsenic contamination (0.4–972 μg/L). In addition, we examined sedimentary Cladocera and chironomid abundances and community composition, as well as open-water zooplankton communities and chlorophyll-a concentrations in10 of these study lakes along a gradient of arsenic contamination (0.9–1113 μg/L). Our results show that present-day arsenic concentration is not a significant driver of biotic community composition of the organisms we studied, but instead, that other variables such as lake depth and pH were more important in structuring assemblages. These results suggest that, while legacy contamination has greatly increased metal concentration beyond historical conditions, variability in lake-specific controls among the study lakes appear to be more important in the structuring of diatom, Cladocera, chironomidae, and zooplankton in these lakes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.