Abstract

Progressively stringent regulations regarding vehicle emissions and fuel economy have spurred technology diversification in light-duty passenger vehicles (LDPVs). To assess the real-world emissions and fuel economy performances of hybrid electric vehicles (HEVs) compared to conventional internal combustion engine (ICE) vehicles, on-road measurements of ten gasoline, four diesel and six full hybrid LDPVs were performed using portable emissions measurement systems (PEMS) in Macao, China. The hot-running emission results indicate that the high emission risks of gasoline vehicles are associated with high mileage and old model years. Diesel vehicles are found to be the highest pollutant emitters in this study due to the intentional removal of aftertreatment systems. Under hot-running conditions, HEVs, as expected, could achieve carbon-reduction benefits of approximately 30 % (i.e., lower CO2 emissions and fuel consumption) compared to their conventional gasoline counterparts, while no measurable reduction in pollutant emissions was observed except in NOX (~70 % reduction). In contrast, the cold-start extra emissions (CSEEs) of CO2 reached 120–364 g/start for these HEVs, even exceeding the maximum values of conventional gasoline vehicles. However, the higher CO2 CSEEs of HEVs can be far offset by their hot-running emission reduction benefits. For tailpipe pollutants, the CSEEs of the HEVs were reduced by 21 %–68 % on average in comparison to those of conventional gasoline vehicles. Furthermore, strong correlations (R2 values of 0.69–0.89) between the road grades and relative emissions were observed. These results can provide necessary information regarding the improvement of future LDPV emission models and inventories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.