Abstract

Abstract The sensitivities of convective storm structure and intensity to variations in the depths of the prestorm mixed layer, represented here by the environmental lifted condensation level (LCL), and moist layer, represented by the level of free convection (LFC), are studied using a three-dimensional cloud model containing ice physics. Matrices of simulations are generated for idealized environments featuring both small and large LCL = LFC altitudes, using a single moderately sheared curved hodograph trace in conjunction with convective available potential energy (CAPE) values of either 800 or 2000 J kg−1, with the matrices consisting of all four combinations of two distinct choices of buoyancy and shear profile shape. For each value of CAPE, the LCL = LFC altitudes are also allowed to vary in a separate series of simulations based on the most highly compressed buoyancy and shear profiles used for that CAPE, with the environmental buoyancy profile shape, subcloud equivalent potential temperature, subcl...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call