Abstract

Interactions between carbonated ultramafic silicate magmas and the continental lithospheric mantle results in the formation of dunite—a ubiquitous xenolith type in kimberlites and aillikites. However, whether this process dominantly occurs in the mantle source region or by subsequent interactions between lithospheric mantle fragments and transporting silica-undersaturated magmas during ascent remains debated. Aillikite magmas, which are derived from the fusion of carbonate-phlogopite metasomes under diamond-stability field upper mantle conditions, have a mineralogically more complex source than kimberlites, providing an opportunity to more fully constrain the origin of dunite xenoliths in such deeply sourced carbonated silicate magmas. Here we present a major and trace element study of olivine occurring in xenoliths and as phenocrysts in an aillikite dike located on the southern Superior Craton. We show that olivine within the dunite microxenoliths exhibits extreme enrichment in Al, Cr, Na, and V when compared to equivalent xenoliths carried by kimberlites. We interpret these results as evidence for the presence of carbonate-phlogopite metasomes left residual in the cratonic mantle source during aillikite magma formation. Our results are inconsistent with models of dunite formation through orthopyroxene dissolution upon kimberlite/aillikite magma ascent, supporting an origin for such dunites that is more closely linked to primary melt generation at the base of relatively thick continental lithosphere. Our work demonstrates that it is possible to constrain the precursor composition of cratonic mantle dunite at depth, thereby facilitating the further exploration of how carbonated silicate magmas modify and weaken continental lithospheric roots.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call