Abstract
In this work, zinc oxide (ZnO) micron and nano sized-particles with different morphologies were synthesized by aqueous precipitation and evaluated as antimicrobial agents against foodborne pathogens. The most effective bactericide system was selected to prepare active poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) films by three different methods (i) direct melt-mixing, (ii) melt-mixing of preincorporated ZnO into PHBV18 (18mol% valerate content) fiber mats made by electrospinning, and, (iii) as a coating of the annealed electrospun PHBV18/ZnO fiber mats over compression molded PHBV. Results showed that ZnO successfully improved the thermal stability of the PHBV18, being the preincorporation method the most efficient in mitigating the negative impact that the PHBV18 had on the thermal stability, barrier and optical properties of the PHBV films. Similar behavior was found for the coating structure although this film showed effective and prolonged antibacterial activity against Listeria monocytogenes. This study highlights the suitability of the PHBV/ZnO nanostructures for active food packaging and food contact surface applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.