Abstract

The impact morphology of viscoplastic drops on a heated surface in the Leidenfrost regime is investigated experimentally by high-speed imaging. In particular several important parameters which characterize the impact morphology (such as maximum spreading diameter, minimum retracting diameter and maximum bouncing height etc.) are measured by analysing the impact process, recorded using a high-speed camera. It is shown that as the yield stress grows, surface forces are no longer able to minimize the free surface of the drop, and the inertial deformation upon impact becomes permanent. For small values of the yield stress, the impact morphology of viscoplastic Leidenfrost drops is similar to that of Newtonian drops. These effects can be interpreted in terms of the Bingham-Capillary number, which compares the yield stress magnitude and the capillary (Laplace) pressure. These results suggest that the main contribution to drop rebound is due to surface forces, and not to the intrinsic elasticity of the vapour cushion between the drop and the surface, which is a major assumption in one of the existing models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.