Abstract

The numerical investigation of the impact of time-dependent accelerations (vibrations) on the flow and heat and mass transfer in the melt is carried out for the case of modeling the crystal growth by the floating zone method under conditions of microgravity that exist onboard spacecraft. The effects of the Archimedean buoyancy force and of vibrations of the free surface of fluid are considered separately. When solving the problem of the effect of the vibrations of the free surface of fluid, the previously obtained data were used. It is shown that vibrations of the free surface have a much stronger effect on the processes under consideration than the buoyancy. Some problems that are related to the newly discovered effects are discussed. The use of vibroprotected systems and a rotating magnetic field can help solve these problems. We plan to continue our investigations in future spacecraft experiments, in particular, at the International Space Station, which is under construction at the moment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call