Abstract
Studies have shown that urban vegetation can be an effective strategy for reducing energy consumption in urban buildings by regulating the microclimate and shading solar radiation on building surfaces. However, an understanding of the potential energy savings of vegetation morphological planning at the urban scale is still lacking, particularly regarding the quantitative correlation between urban vegetation morphology and its impact on urban building energy use. The morphology of the metropolitan area in Nanjing, a typical hot summer/cold winter city in eastern China, was statistically analyzed, and 40 urban building-vegetation morphological prototypes were extracted. Using the proposed co-simulation technique for urban microclimate and urban building energy, the summer and winter building energy consumption of the prototypes were simulated. A quantitative analysis was conducted on the relationship between urban vegetation morphology indexes and building energy consumption. The results indicate that strategically planned urban vegetation morphology can significantly reduce urban building energy consumption. In the summer, vegetation close to the geometric center of the site, uniformly distributed and highly mixed with buildings, can significantly reduce the building energy consumption; in the winter, the opposite is true. The presented findings provide designers and planners with strategies for incorporating urban vegetation morphology design into the construction of energy efficient cities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.