Abstract

It is well known that the most critical issue in Ge CMOS technology is the successful growth of high-k gate dielectrics on Ge substrates. The high interface quality of Ge/high-k dielectric is connected with advanced electrical responses of Ge based MOS devices. Following this trend, atomic layer deposition deposited ultrathin Al2O3 and HfO2 films were grown on p-Ge. Al2O3 acts as a passivation layer between p-Ge and high-k HfO2 films. An extensive set of p-Ge/Al2O3/HfO2 structures were fabricated with Al2O3 thickness ranging from 0.5 nm to 1.5 nm and HfO2 thickness varying from 2.0 nm to 3.0 nm. All structures were characterized by x-ray photoelectron spectroscopy (XPS) and AFM. XPS analysis revealed the stoichiometric growth of both films in the absence of Ge sub-oxides between p-Ge and Al2O3 films. AFM analysis revealed the growth of smooth and cohesive films, which exhibited minimal roughness (~0.2 nm) comparable to that of clean bare p-Ge surfaces.The electrical response of all structures was analyzed by C–V, G–V, C–f, G–f and J–V characteristics, from 80 K to 300 K. It is found that the incorporation of ultrathin Al2O3 passivation layers between p-Ge and HfO2 films leads to superior electrical responses of the structures. All structures exhibit well defined C–V curves with parasitic effects, gradually diminishing and becoming absent below 170 K. Dit values were calculated at each temperature, using both Hill–Coleman and Conductance methods. Structures of p-Ge/0.5 nm Al2O3/2.0 nm HfO2/Au, with an equivalent oxide thickness (EOT) equal to 1.3 nm, exhibit Dit values as low as ~7.4 × 1010 eV−1 cm−2. To our knowledge, these values are among the lowest reported. J–V measurements reveal leakage currents in the order of 10–1 A cm−2, which are comparable to previously published results for structures with the same EOT. A complete mapping of the energy distribution of Dits into the energy bandgap of p-Ge, from the valence band towards midgap, is also reported. These promising results contribute to the challenge of switching to high-k dielectrics as gate materials for future high-performance metal–oxide–semiconductor field-effect transistors based on Ge substrates. Making the switch to such devices would allow us toexploit its superior properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.