Abstract

Type 1 diabetes has been associated with alterations in attentional processing and other cognitive functions, and previous studies have found alterations in both brain structure and function in affected patients. However, these previous neuroimaging studies have generally examined older patients, particularly those with major comorbidities known to affect functioning independent of diabetes. The primary aim of the current study was to examine the neural dynamics of selective attention processing in a young group of patients with type 1 diabetes who were otherwise healthy (i.e., without major comorbidities). Our hypothesis was that these patients would exhibit significant aberrations in attention circuitry relative to closely matched controls. The final sample included 69 participants age 19-35 years old, 35 with type 1 diabetes and 34 matched nondiabetic controls, who completed an Eriksen flanker task while undergoing magnetoencephalography. Significant group differences in flanker interference activity were found across a network of brain regions, including the anterior cingulate, inferior parietal cortices, paracentral lobule, and the left precentral gyrus. In addition, neural activity in the anterior cingulate and the paracentral lobule was correlated with disease duration in patients with type 1 diabetes. These findings suggest that alterations in the neural circuitry underlying selective attention emerge early in the disease process and are specifically related to type 1 diabetes and not common comorbidities. These findings highlight the need for longitudinal studies in large cohorts to clarify the clinical implications of type 1 diabetes on cognition and the brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.