Abstract

ABSTRACT We identify and characterize a Milky Way-like realization from the Auriga simulations with two consecutive massive mergers $\sim 2$ Gyr apart at high redshift, comparable to the reported Kraken and Gaia-Sausage-Enceladus. The Kraken-like merger (z = 1.6, $M_{\rm Tot}=8\times 10^{10}\, \rm {M_{\odot }}$) is gas-rich, deposits most of its mass in the inner $10\,$ kpc, and is largely isotropic. The Sausage-like merger (z = 1.14, $M_{\rm Tot}=1\times 10^{11}\, \rm {M_{\odot }}$) leaves a more extended mass distribution at higher energies, and has a radially anisotropic distribution. For the higher-redshift merger, the stellar mass ratio of the satellite to host galaxy is high (1:3). As a result, the chemistry of the remnant is indistinguishable from contemporaneous in situ populations, making it challenging to identify through chemical abundances. This naturally explains why all abundance patterns attributed so far to Kraken are in fact fully consistent with the metal-poor in situ so-called Aurora population and thick disc. However, our model makes a falsifiable prediction: if the Milky Way underwent a gas-rich double merger at high redshift, then this should be imprinted on its star formation history with bursts about $\sim 2\,$ s apart. This may offer constraining power on the highest-redshift massive mergers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call