Abstract
It is usual for computational efficiency to simulate growing alloy dendrites during solidification using a two-dimensional model. However, the fidelity of such simulations is to be questioned, since observations show that three-dimensional models lead to significantly more realistic results in comparison to experiments under many situations. Even in thin sample cases, the properties affecting, for example, mechanical behaviour are intrinsically three-dimensional. However, partly due to the lack of published work on the, topic the impact of 2D assumptions on the evolution and structural mechanical behaviour of dendrites has not been properly explored. In this study, solidification using the Cellular Automata (CA) method was coupled to a Finite Volume Structural Mechanics Solver (FVSMS) capable of both 2D and 3D modelling, applied to a selection of representative problems which clearly demonstrate that structural mechanics is another factor in the modelling of dendrites where two-dimensional assumptions can lead to significantly altered behaviour when compared to three-dimensional reality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.