Abstract

Abstract. To estimate the impact of emissions by road, aircraft and ship traffic on ozone and OH in the present-day atmosphere six different atmospheric chemistry models have been used. Based on newly developed global emission inventories for road, ship and aircraft emission data sets each model performed sensitivity simulations reducing the emissions of each transport sector by 5%. The model results indicate that on global annual average lower tropospheric ozone responds most sensitive to ship emissions (50.6%±10.9% of the total traffic induced perturbation), followed by road (36.7%±9.3%) and aircraft exhausts (12.7%±2.9%), respectively. In the northern upper troposphere between 200–300 hPa at 30–60° N the maximum impact from road and ship are 93% and 73% of the maximum effect of aircraft, respectively. The latter is 0.185 ppbv for ozone (for the 5% case) or 3.69 ppbv when scaling to 100%. On the global average the impact of road even dominates in the UTLS-region. The sensitivity of ozone formation per NOx molecule emitted is highest for aircraft exhausts. The local maximum effect of the summed traffic emissions on the ozone column predicted by the models is 0.2 DU and occurs over the northern subtropical Atlantic extending to central Europe. Below 800 hPa both ozone and OH respond most sensitively to ship emissions in the marine lower troposphere over the Atlantic. Based on the 5% perturbation the effect on ozone can exceed 0.6% close to the marine surface (global zonal mean) which is 80% of the total traffic induced ozone perturbation. In the southern hemisphere ship emissions contribute relatively strongly to the total ozone perturbation by 60%–80% throughout the year. Methane lifetime changes against OH are affected strongest by ship emissions up to 0.21 (± 0.05)%, followed by road (0.08 (±0.01)%) and air traffic (0.05 (± 0.02)%). Based on the full scale ozone and methane perturbations positive radiative forcings were calculated for road emissions (7.3±6.2 mWm−2) and for aviation (2.9±2.3 mWm−2). Ship induced methane lifetime changes dominate over the ozone forcing and therefore lead to a net negative forcing (−25.5±13.2 mWm−2).

Highlights

  • The rise in energy consumption by the growing human population and the increasing mobility are associated with emissions of air pollutants in particular by road and air traffic as well as international shipping

  • With fuel consumption and CO2 emissions only 3% higher, the final global traffic emissions of NOx, non-methane hydrocarbons (NMHCs) and CO are higher by 33%, 48% and 51%, respectively

  • This can be attributed to the higher level of NMHCs and NO2 over the continents acting as a sink for OH at high pollution levels

Read more

Summary

Introduction

The rise in energy consumption by the growing human population and the increasing mobility are associated with emissions of air pollutants in particular by road and air traffic as well as international shipping. Eyring et al (2007) used a multi-model approach based on EDGAR emissions and reported somewhat lower values of 5–6 ppbv for the North Atlantic. They calculated a maximum column perturbation of 1 DU for the tropospheric ozone column associated with radiative forcings of 9.8 mW/m2. The climatological implications and future projections are subject of followup studies

Emissions and simulation setup
Small perturbations and scaling
Participating models
LMDzINCA
OsloCTM2
Total ozone perturbation
Zonal mean ozone perturbation
Effects by transport modes
Relative importance of traffic sectors
Global OH
Methane lifetime
Sensitivity of OH production
Radiative forcings
Findings
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.