Abstract

Study of the impact of traffic emissions on air quality around the Haram Mosque in Makkah, Saudi Arabia, was conducted experimentally, numerically and statistically. Experimental study was performed to measure existing air quality. Numerical study was done to model the extent of air movement and pollutant dispersion within and around the Haram area. Statistical study was conducted to determine correlation coefficients, auto-correlation and time lags of each pollutant. Pollutant measurements were carried out using an air quality mobile laboratory at three sites. Numerical calculations were made using an ISC-AERMOD dispersion model. Concentrations of traffic emissions including nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), ozone (O3) and airborne particulate material under 10 μm diameter (PM10) are presented and analyzed. The calculated concentrations are validated by comparing with observed values at the three sites. The results indicate good agreement between calculated concentrations and observed values, which demonstrate satisfactory model performance. Results show that the Haram area is experiencing high concentrations of dust. High buildings around the Haram Mosque act as flow obstacles. Mean pollutant dispersion was toward the south and southeast during January and June. Highest mean concentrations were observed in January and June.

Highlights

  • The air quality of urban environments has become more important in recent years

  • The results indicate good agreement between calculated concentrations and observed values, which demonstrate satisfactory model performance

  • Mean pollutant dispersion was toward the south and southeast during January and June

Read more

Summary

Introduction

The air quality of urban environments has become more important in recent years. Control of air quality affected by traffic emission is vital for human health. Studies on air pollution have been made in Makkah, Saudi Arabia, focusing on the central area near the Haram Mosque and other important religious sites (i.e., Mina and Arafat). These studies show high concentrations of atmospheric air pollutants, in excess of standards. This is attributed to traffic emission during the Hajj season, when about three million people gather in these limited areas [2,3,4,5,6,7,8,9,10]. There are many studies assessing air quality inside tunnels near the Haram Mosque, which show very high concentrations surpassing standards [11,12,13]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.