Abstract

Hybrid organic solar cells based on pairs of donor and acceptor materials offer enhanced light absorption width and surface morphology. In order to investigate the role of introducing metal oxide nanoparticles (NPs) and thermal annealing on the optical, structural and morphological behaviours of the active layer polymers’ [poly([4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl]{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}):[6,6]-Phenyl-C71-butyric acid methyl ester (PTB7:PC 71 BM), thin films with and without the addition of 10% TiO 2 nanoparticles (NP) were prepared and characterized. Ultraviolet–Visible- Near-infrared (UV–Vis-NIR) Spectrophotometry, Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) techniques were used to characterize the thin films. Results show that incorporation of the TiO 2 (NPs) with annealing treatment of the thin films enhanced the optical absorption and crystallinity of the PTB7:PC 71 BM blend. The device based on PTB7:PC 71 BM showed power conversion efficiency (PCE) of 5.6%. The incorporation of 10%-TiO 2 into the PTB7:PC 71 BM blend leads to a sharp drop in PCE (0.08%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.