Abstract

ABSTRACTThis article provides a detailed description of three factors (specification of the ability distribution, numerical integration, and frame of reference for the item parameter estimates) that might affect the item parameter estimation of the three-parameter logistic model, and compares five item calibration methods, which are combinations of the three factors, using a simulation study. The five item calibration methods are Normal-Midpoint-Prior (NMPr), Normal-Hermite-Prior (NHPr), Normal-Midpoint-Posterior (NMPo), Normal-Hermite-Posterior (NHPo), and Empirical-Midpoint-Prior (EMPr). In addition, four item response theory computer programs (BILOG-MG, PARSCALE, flexMIRT, and ICL) are compared in terms of their default specifications and available options of the three factors. The EMPr method recovered item parameters accurately regardless of the shape of the population ability distribution and the number of quadrature points. The NMPr, NHPr, NMPo, and NHPo methods returned item parameter estimates with low bias when abilities followed a standard normal distribution, but tended to either underestimate or overestimate the item parameters when the population ability distribution was skewed. Also, unlike the EMPr method, the performance of these four methods depended on the number of quadrature points.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.