Abstract

The interfacial thermal contact conductance between an impinging molten droplet and a cold substrate plays an important role in the droplet spreading and solidification. In this paper, a simple correlation for the thermal contact conductance during a rapid contact solidification process was obtained. By introducing this correlation into the numerical model, a non-constant thermal contact conductance that varies with time and position was adopted for the first time to simulate the spreading and solidification of a molten droplet on a substrate. It was found that the droplet spreading and final bump shape are sensitive to the thermal contact conductance. Experiments were also performed to observe the final bump shape of the droplet. Qualitative agreement between the numerical and the experimental results justified the present method. Because the thermal contact conductance is not required to be prescribed, the present method is applicable to different operation conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call