Abstract

Abstract. We described new sea surface CO2 observations in the south-western Indian Ocean obtained in January 2020 when a strong bloom event occurred south-east of Madagascar and extended eastward in the oligotrophic Indian Ocean subtropical domain. Compared to previous years (1991–2019) we observed very low fCO2 and dissolved inorganic carbon concentrations (CT) in austral summer 2020, indicative of a biologically driven process. In the bloom, the anomaly of fCO2 and CT reached respectively −33 µatm and −42 µmol kg−1, whereas no change is observed for alkalinity (AT). In January 2020 we estimated a local maximum of air–sea CO2 flux at 27∘ S of −6.9 mmol m−2 d−1 (ocean sink) and −4.3 mmol m−2 d−1 when averaging the flux in the band 26–30∘ S. In the domain 25–30∘ S, 50–60∘ E we estimated that the bloom led to a regional carbon uptake of about −1 TgC per month in January 2020, whereas this region was previously recognized as an ocean CO2 source or near equilibrium during this season. Using a neural network approach that reconstructs the monthly fCO2 fields, we estimated that when the bloom was at peak in December 2019 the CO2 sink reached −3.1 (±1.0) mmol m−2 d−1 in the band 25–30∘ S; i.e. the model captured the impact of the bloom. Integrated in the domain restricted to 25–30∘ S, 50–60∘ E, the region was a CO2 sink in December 2019 of −0.8 TgC per month compared to a CO2 source of +0.12 (±0.10) TgC per month in December when averaged over the period 1996–2018. Consequently in 2019 this region was a stronger CO2 annual sink of −8.8 TgC yr−1 compared to −7.0 (±0.5) TgC yr−1 averaged over 1996–2018. In austral summer 2019–2020, the bloom was likely controlled by a relatively deep mixed-layer depth during the preceding winter (July–September 2019) that would supply macro- and/or micro-nutrients such as iron to the surface layer to promote the bloom that started in November 2019 in two large rings in the Madagascar Basin. Based on measurements in January 2020, we observed relatively high N2 fixation rates (up to 18 nmol N L−1 d−1), suggesting that diazotrophs could play a role in the bloom in the nutrient-depleted waters. The bloom event in austral summer 2020, along with the new carbonate system observations, represents a benchmark case for complex biogeochemical model sensitivity studies (including the N2 fixation process and iron supplies) for a better understanding of the origin and termination of this still “mysterious” sporadic bloom and its impact on ocean carbon uptake in the future.

Highlights

  • In the south-western subtropical Indian Ocean a phytoplankton bloom, called the South-East Madagascar Bloom (SEMB), occurs sporadically during austral summer (December–March, Fig. 1)

  • We evaluate the impact of the bloom on air–sea CO2 fluxes based on both observations and reconstructed monthly fugacity of CO2 (f CO2) fields in the south-western Indian Ocean

  • As opposed to previous years, the 2020 SEMB event started in November 2019 in the Madagascar Basin and was pronounced in two large rings with monthly mean chlorophyll a (Chl a) concentrations reaching 1 mg m−3 at 25◦ S, 52◦ E (Fig. S1 in the Supplement)

Read more

Summary

Introduction

In the south-western subtropical Indian Ocean a phytoplankton bloom, called the South-East Madagascar Bloom (SEMB), occurs sporadically during austral summer (December–March, Fig. 1). Numerous cruises measuring sea surface CO2 fugacity (f CO2) have been conducted since the 1990s in the south-western Indian Ocean region (Poisson et al, 1993; Metzl et al, 1995; Sabine et al, 2000; Metzl, 2009), the impact of the SEMB on air–sea CO2 fluxes was not previously investigated. This is probably because the bloom was not strong enough at the time of the cruises to identify large f CO2 anomalies in this region. We evaluate the impact of the bloom on air–sea CO2 fluxes based on both observations and reconstructed monthly f CO2 fields in the south-western Indian Ocean

Data collection
Reconstructed f CO2 and air–sea CO2 fluxes
Sea surface f CO2, CT and AT distributions in the SEMB in January 2020
Comparison with a low bloom year, 2005
A large biologically driven f CO2 negative anomaly in 2020 relative to the anthropogenic uptake of CO2
Specificities of the SEMB in 2020
The changing ocean CO2 uptake in the SEMB based on reconstructed pCO2
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call