Abstract

ABSTRACTThe changing characteristics of lake ice phenology over the Tibetan Plateau (TP) are investigated using historical satellite retrieved datasets during 2002–15 in this study. The results indicate that the freezing process mainly starts in December, and the ice melting process generally occurs in April for most lakes. However, the changes in lake ice phenology have varied depending on the location in recent years, with delayed break-up dates and prolonged ice durations in the southern TP, but no consistent changes have occurred in the lakes in the northern TP. Further analysis presents a close connection between the variation in the lake ice break-up date/ice duration over the southern TP and the winter North Atlantic Oscillation (NAO). The positive NAO generally excites an anomalous wave activity that propagates southward from the North Atlantic to North Africa and, in turn, strengthens the African–Asian jet stream at its entrance. Because of the blocking effect of the TP, the enhanced westerly jet can be divided into two branches and the south branch flow can deepen the India–Myanmar trough, which further strengthens the anomalous cyclonic circulation and water vapor transport. Therefore, the increased water vapor transport from the northern Indian Ocean to the southern region of the TP can increase the snowfall over this region. The increased snow cover over the lake acts as an insulating layer and lowers the lake surface temperature in the following spring by means of snow–ice feedback activity, resulting in a delayed ice break-up date and the increased ice duration of the lakes over the southern TP in recent years.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call