Abstract

A computational investigation has been carried out to examine a non-reacting rarefied hypersonic flow over cavities by employing the Direct Simulation Monte Carlo (DSMC) method. The work focuses on the effects on the aerodynamic surface quantities due to variations in the cavity length-to-depth (L/H) ratio. The results highlight the sensitivity of the heat transfer, pressure and skin friction coefficients due to changes to the cavity L/H ratio. The L/H ratio ranged from 1 to 4, which corresponds to the transition flow regime based on an overall Knudsen number KnL. The analysis showed that the aerodynamic quantities acting on the cavity surface rely on the L/H ratio. It was found that pressure load and heating load to the cavity surfaces presented peak values along the forward face, more precisely in the vicinity of the cavity shoulder. Moreover, these loads are much higher than those found in a smooth surface, for the conditions investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.