Abstract
In this study, the influence of a circularly polarized non-resonant high-frequency laser field radiation on the electronic structure of a hydrogen molecular ion formed by two fixed hydrogen-like donor atoms bound to an electron confined in a two-dimensional Gaussian quantum dot is carried out. The low-lying energy states of the molecular complex were calculated by using the two-dimensional diagonalization method. The results show that the stability of the molecular complex is sensitive to the non-resonant laser field intensity and the internuclear distance. We conclude that the dissociation process of the molecular ion system can be tuned by changing the distance between donor atoms and the non-resonant laser field intensity. It was also concluded that if the molecular complex structure of the system is preserved, the binding energy is higher than in a fragmented state resulting from the dissociation process of the structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.