Abstract
This paper presents an efficient word spotting system applied to handwritten Arabic documents, where images are represented with bag-of-visual-SIFT descriptors and a sliding window approach is used to locate the regions that are most similar to the query by following the query-by-example paragon. First, a pre-processing step is used to produce a better representation of the most informative features. Secondly, a region-based framework is deployed to represent each local region by a bag-of-visual-SIFT descriptors. Afterward, some experiments are in order to demonstrate the codebook size influence on the efficiency of the system, by analyzing the curse of dimensionality curve. In the end, to measure the similarity score, a floating distance based on the descriptor’s number for each query is adopted. The experimental results prove the efficiency of the proposed processing steps in the word spotting system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.