Abstract

The thalamus is a small, bilateral structure in the diencephalon that integrates signals from many areas of the CNS. This critical anatomical position allows the thalamus to influence whole-brain activity and adaptive behaviour. However, traditional research paradigms have struggled to attribute specific functions to the thalamus, and it has remained understudied in the human neuroimaging literature. Recent advances in analytical techniques and increased accessibility to large, high-quality data sets have brought forth a series of studies and findings that (re-)establish the thalamus as a core region of interest in human cognitive neuroscience, a field that otherwise remains cortico-centric. In this Perspective, we argue that using whole-brain neuroimaging approaches to investigate the thalamus and its interaction with the rest of the brain is key for understanding systems-level control of information processing. To this end, we highlight the role of the thalamus in shaping a range of functional signatures, including evoked activity, interregional connectivity, network topology and neuronal variability, both at rest and during the performance of cognitive tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call