Abstract

Based on the results of numerical modelling, characteristic features of distribution of transformed and polluted waters of the Dnieper River in the water area of the north-western part of the Black Sea (NWBS) are determined and analyzed. This pollution of the marine environment resulted from the extremely large man-made flood caused by the destruction of the Kakhovka Reservoir dam by the Russian occupation forces in June 2023. Various types of pollutants, which contained in the Kakhovka Reservoir, in the lower Dnieper River and in the bottom sediments, were carried out into the sea by the flood discharge. A significant amount of pollutants was washed into the sea from the flooded areas of the lower Dnieper basin. Special attention is given to changes in oceanographic conditions in the Dnieper-Bug estuary region (DBR) of the Black Sea, which determine the extent of marine pollution. Sea water salinity was used as an indicator of the degree of infiltration of polluted seawater from the estuary into the sea. It was identified that the least transformed river waters with low salinity correspond to high pollution levels. Delft3D-Flow Flexible Mesh hydrodynamic model, developed by Deltares, was used in this study. The simulation was performed for the time period 01 to 30 June 2023. During the first days after the dam break the desalinated and polluted transitional waters, flowing from the Dnieper-Bug estuary, spread over the entire water column down to 15-20 m depth in the DBR area. In this case, the spreading of transitional waters was atypical, as it usually occurs only within the thin near-surface layer of the sea. By mid-June the flow of transitional water with a salinity of 4-6 ‰ covered the entire water column from surface to bottom near the northern coast of the NWBS and over the Odessa Bank. This was facilitated by the supermassive volumes of transformed Dnieper river waters flowing out over a short period of time due to dam break, as well as by the resulting intense gradient currents and mixing caused by spatial gradients in the velocity of the generated currents. The width of the desalinated water plume and its area in the bottom layer were smaller than in the surface layer. The largest vertical salinity gradients were formed to the south of the Odessa Bank, where salinity was 4-6 ‰ in the surface layer and 14-17 ‰ in the bottom. Dilution of the desalinated water plume in the bottom water layer was much more intensive than in the surface water. The character of water circulation pattern in the northern part of the NWBS in the first days after the inflow of transient waters from the Dnieper-Bug estuary was determined by the runoff gradient currents, which later were replaced by wind-driven currents in the Odessa area and over the Odessa Bank, and by the meandering flow of gradient density currents further south. The findings of this study contribute to a better understanding of the impact of the inflow of transformed river waters from the Dnieper-Bug estuary on the variability of oceanographic characteristics and the ecological state of marine waters in the Dnieper-Bug region of the northwestern Black Sea.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.