Abstract

A complex yet realistic nonuniform rolling friction force distribution of a spring-rolling isolation system could lead to great complexity in determining its seismic response. This paper investigates the isolation performance of a spring-rolling isolation system assuming that the rolling friction force gradually and linearly increases with the relative displacement between the isolator and the ground. A series of ground motions with different characteristics were applied to this system. The analysis results show that the considered concavely distributed friction force is capable of dissipating the earthquake energy, and it is also able to modify the structural natural period. These merits combined help to improve the isolating efficacy of the spring-rolling isolation system compared with scenarios with uniform distribution pattern, and more importantly lead to a relatively optimum isolation state, avoiding a sudden amplification of the structural seismic response, regardless of the input motion characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.