Abstract

In this paper, neglecting the effects of free virus, we consider a simple model of cell-to-cell spread of HIV-1. We discuss the impact of the CD8+ cell non-cytotoxic anti-viral response (CNAR) and cytotoxic T lymphocyte (CTL) activity on infection by HIV-1. Two types of models are considered: the ordinary differential equation (ODE) model and the discrete time delay differential equation (DDE) system. The steady states of the ODE model are globally asymptotically stable respectively under two threshold criteria. In the DDE model, the global stability of the infected steady state of the ODE model becomes only ultimately stable. Moreover, at a certain interval of the time delay, the DDE model will produce Hopf bifurcation or periodic solutions. The introduction of CTL and CNAR will change the values of these steady states and induce fluctuations in the cell concentration. It also affects the critical value of the time delay and is of utility in the interpretation of typical HIV-dynamics data resulting from clinical trials. The DDE model produces sustained infective oscillations in some real parameter values, which is different from the result of the similar cell-free viral spread model with delay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.