Abstract

Mixed oxides composed of the four metals Mo, V, Te, and Nb are known to be efficient catalysts in selective oxidation of lower alkanes. The outstanding catalytic performance of such mixed oxides is attributed to the presence of the so-called M1 crystal phase that contains all four elements in the metal positions of the structure. In the present work, an M1 phase composed only of Mo and V has been prepared by hydrothermal synthesis. High crystallinity was achieved by applying a synthesis temperature of 200 °C. The phase-pure mixed MoV oxide was studied as catalyst in the oxidation of propane. In contrast to previous reports, the desirable oxidation product acrylic acid is formed over the Te-free M1 structure in significant amounts, implying that Te is not necessarily required as a component of the active ensemble responsible for selective oxygen insertion. The MoV M1 oxide is, however, less selective compared to that of the M1 structure composed of the four metals Mo, V, Te, and Nb. The reason has been det...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call