Abstract

Zinc oxide (ZnO) is a semiconducting material that is widely used in photocatalytic applications. Unfortunately, due to the rapid electron-hole pair recombination, the photocatalytic efficiency of ZnO is very low. Creating new nanocomposites of ZnO with bimetallic nanoparticles (NPs) is a promising research effort. In this study, the AuAg NPs were deposited onto ZnO nanorods (NRs) grown on a glass substrate using one-pot hydrothermal with five different molar ratios of the HAuCl4 and AgNO3 precursors (1:0, 3:1, 1:1, 1:3, and 0:1). The result shows that the photocatalytic dye degradation performance of ZnO/Au1Ag3 is comparable to that of ZnO/Au (49–50%, k = 0.00709 min−1), which is twice as efficient as the performance of the pristine ZnO (25%, k = 0.00254 min−1). The high number of deposited Au1Ag3 NPs roughened the surface of the nanocomposites, and their role in inhibiting the exciton recombination rates may have a significant effect on enhancing the photocatalytic activity of pristine ZnO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call