Abstract

Chlorpromazine, an antipsychotic medication, is conventionally applied to cope with the psychotic disorder such as schizophrenia. In cellular studies, chlorpromazine exerts many different actions through calcium ion (Ca2+) signaling, but the underlying pathways are elusive. This study explored the effect of chlorpromazine on viability, Ca2+ signaling pathway and their relationship in glial cell models (GBM 8401 human glioblastoma cell line and Gibco® Human Astrocyte (GHA)). First, chlorpromazine between 10 and 40 μM induced cytotoxicity in GBM 8401 cells but not in GHA cells. Second, in terms of Ca2+ homeostasis, chlorpromazine (10-30 μM) increased intracellular Ca2+concentrations ([Ca2+]i)rises in GBM 8401 cells but not in GHA cells. Ca2+ removal reduced the signal by approximately 55%. Furthermore, chelation of cytosolic Ca2+ with BAPTA-AM reduced chlorpromazine (10-40μM)-induced cytotoxicity in GBM 8401 cells. Third, in Ca2+-containing medium of GBM 8401 cells, chlorpromazine-induced Ca2+ entry was inhibited by the modulators of store-operated Ca2+ channel (2-APB and SKF96365). Lastly, in Ca2+-free medium of GBM 8401 cells, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin completely inhibited chlorpromazine-increased [Ca2+]i rises. Conversely, treatment with chlorpromazine abolished thapsigargin-increased [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 abolished chlorpromazine-increased [Ca2+]i rises. Together, in GBM 8401 cells but not in GHA cells, chlorpromazine increased [Ca2+]i rises by Ca2+ influx via store-operated Ca2+ entry and PLC-dependent Ca2+ release from the endoplasmic reticulum. Moreover, the Ca2+ chelator BAPTA-AM inhibited cytotoxicity in chlorpromazine-treated GBM 8401 cells. Therefore, Ca2+ signaling was involved in chlorpromazine-induced cytotoxicity in GBM 8401 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.