Abstract
Carbon nanotube (CNT) supported catalysts containing ceria-zirconia mixed oxide (CeZrO2) and nickel were synthesized and tested in water gas shift (WGS) reaction. Physicochemical characterization including N2 adsorption, X-ray diffraction (XRD), scanning and transmission microscopy (SEM/TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and temperature programmed reduction with H2 (H2-TPR), as well as catalytic tests of WGS reaction showed that the synthesis method had significant impact on composition, morphology, structural properties and catalytic performance of obtained hybrid materials. The catalysts obtained by co-precipitation of metal oxides (NiO and/or CeZrO2) on CNT walls demonstrated better dispersion of active phase and smaller particle size than catalyst obtained by depositing of powder CeZrO2 or Ni-CeZrO2. Moreover, the catalyst obtained by co-precipitation revealed better performance in WGS reaction; however, some CH4 formation was noticed over Ni-CeZrO2/CNT system. The role of CeZrO2 in catalysts performance in WGS as well as the importance of good metal-oxide contact were confirmed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.