Abstract

This study aimed to investigate the effect of stimulus signal length on tongue and lip motion pattern stability in speakers diagnosed with amyotrophic lateral sclerosis (ALS) compared to healthy controls. Electromagnetic articulography was used to derive articulatory motion patterns from individuals with mild (n = 27) and severe (n = 16) ALS and healthy controls (n = 25). The spatiotemporal index (STI) was used as a measure of articulatory stability. Two experiments were conducted to evaluate signal length effects on the STI: (a) the effect of the number of syllables on STI values and (b) increasing lengths of subcomponents of a single phrase. Two-way mixed analyses of variance were conducted to assess the effects of syllable length and group on the STI for the tongue tip (TT), tongue back (TB), and lower lip (LL). Experiment 1 showed a significant main effect of syllable length (TT, p < .001; TB, p < .001; and LL, p < .001) and group (TT, p = .037; TB, p = .007; and LL, p = .017). TB and LL stability was generally higher with speech stimuli that included a greater number of syllables. Articulatory variability was significantly higher in speakers diagnosed with ALS compared to healthy controls. Experiment 2 showed a significant main effect of length (TT, p < .001; TB, p = .015; and LL, p < .001), providing additional support that STI values tend to be greater when calculated on longer speech signals. Articulatory stability is influenced by the length of speech signals and manifests similarly in both healthy speakers and persons with ALS. TT stability may be significantly impacted by phonemic content due to greater movement flexibility. Compared to healthy controls, there was an increase in articulatory variability in those with ALS, which likely reflects deviations in speech motor control. https://doi.org/10.23641/asha.24463924.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.