Abstract

The photoexcited triplet states of porphyrins show great promise for applications in the fields of opto-electronics, photonics, molecular wires, and spintronics. The magnetic properties of porphyrin triplet states are most conveniently studied by time-resolved continuous wave and pulse electron spin resonance (ESR). This family of techniques is singularly able to probe small yet essential details of triplet states: zero-field splittings, g-anisotropy, spin polarisation, and hyperfine interactions. These characteristics are linked to spin–orbit coupling (SOC) which is known to have a strong influence on photophysical properties such as intersystem crossing rates. The present study explores SOC effects induced by the presence of Pd2+ in various porphyrin architectures. In particular, the impact of this relativistic interaction on triplet state fine-structure and spin polarisation is investigated. These properties are probed using time-resolved ESR complemented by electron-nuclear double resonance. The findings of this study could influence the future design of molecular spintronic devices. The Pd2+ ion may be incorporated into porphyrin molecular wires as a way of controlling spin polarisation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.