Abstract

Magnesium stearate (MgSt) is a widely used pharmaceutical lubricant in tablet manufacturing. However, batch-to-batch variability in hydrate form and surface area can lead to inconsistency in tablet performance. In this work, several unique MgSt samples were studied: traditional monohydrate samples with high surface area, dihydrate forms with high and low surface area, and disordered forms with low and medium water content. The effects of solid-state form and particle properties on lubrication efficiency, tabletability and dissolution were studied for tablets in a model direct compression formulation. It was found that the monohydrate and dihydrate forms had good lubrication efficiency compared to the disordered form, while the disordered form had the best tabletability. The dissolution rate correlated with surface area, where slower dissolution rates corresponded with higher MgSt surface areas. The dihydrate sample with lower surface area had the best performance for this model formulation, in terms of lubrication efficiency, tabletability and dissolution. Overall, it is concluded that the choice of the most appropriate grade of MgSt for a particular formulation depends on a comprehensive evaluation of the impact of MgSt properties on lubrication efficiency, tabletability and dissolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.