Abstract

Soil is by nature a variable, non-homogeneous material, which has implications for engineering problems involving wave propagation. This paper investigates the impact of the spatial heterogeneity of the stiffness of the soil on the three-dimensional wave propagation. A dynamic Random Finite Element Model is presented in which the soil variability is modelled by means of random fields, applied to the Young’s modulus of the soil, following a Monte-Carlo approach. The results show the importance of accounting for soil variability when making predictions on the maximum vibration level. Deterministic analysis is demonstrated to be insufficient when quantifying the maximum vibration level, because no information on the expected variability of the maximum vibration level is obtained. Furthermore, the scale of fluctuation and anisotropy of the random field strongly impact the estimation of the maximum vibration level, and the time of occurrence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call