Abstract

Early prediction of software quality is important for better software planning and controlling. In early development phases, design complexity metrics are considered as useful indicators of software testing effort and some quality attributes. Although many studies investigate the relationship between design complexity and cost and quality, it is unclear what we have learned beyond the scope of individual studies. This paper presented a systematic review on the influence of software complexity metrics on quality attributes. We aggregated Spearman correlation coefficients from 59 different data sets from 57 primary studies by a tailored meta-analysis approach. We found that fault proneness and maintainability are most frequently investigated attributes. Chidamber and Kemerer metric suite is most frequently used but not all of them are good quality attribute indicators. Moreover, the impact of these metrics is not different in proprietary and open source projects. The result provides some implications for building quality model across project type

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.