Abstract

This paper focuses on the social biological communication process on double-layer complex networks. We propose a virus resource asymmetric coupling propagation model to simulate the propagation process of virus affected by recovered resources, and use a generalized discrete Markov chain method to describe the propagation dynamics. This paper mainly considers the effects of initial seed fraction, network edge coincidence degree, degree distribution heterogeneity and public resource allocation ratio on virus transmission mechanism. We find that by increasing the edge coincidence rate between nodes in the two-tier network, the propagation range of the virus changes from discontinuous growth to continuous growth with the growth of propagation probability. When the heterogeneity of network degree distribution is weak and the initial seed fraction is small, with the increase of the proportion of public resources allocation, the critical probability of virus transmission gradually increases, and the critical probability of virus outbreak first decreases and then increases. At this time, there is a critical value for the public resource allocation proportion. When the public resource allocation proportion exceeds this value, the hybrid resource allocation strategy can be better than the neighbor resource allocation strategy. In other cases, increasing the proportion of public resources allocation will reduce the critical probability of virus transmission and increase the critical probability of virus global diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.