Abstract

Central nervous System (CNS) disease in pediatric acute lymphoblastic leukemia (ALL) is a major concern, but still, cellular mechanisms of CNS infiltration are elusive. The choroid plexus (CP) is a potential entry site, and, to some extent, invasion resembles CNS homing of lymphocytes during healthy state. Given exosomes may precondition target tissue, the present work aims to investigate if leukemia-derived exosomes contribute to a permissive phenotype of the blood-cerebrospinal fluid barrier (BCSFB). Leukemia-derived exosomes were isolated by ultracentrifugation from the cell lines SD-1, Nalm-6, and P12-Ichikawa (P12). Adhesion and uptake to CP epithelial cells and the significance on subsequent ALL transmigration across the barrier was studied in a human BCSFB in vitro model based on the HiBCPP cell line. The various cell lines markedly differed regarding exosome uptake to HiBCPP and biological significance. SD-1-derived exosomes associated to target cells unspecifically without detectable cellular effects. Whereas Nalm-6 and P12-derived exosomes incorporated by dynamin-dependent endocytosis, uptake in the latter could be diminished by integrin blocking. In addition, only P12-derived exosomes led to facilitated transmigration of the parental leukemia cells. In conclusion, we provide evidence that, to a varying extent, leukemia-derived exosomes may facilitate CNS invasion of ALL across the BCSFB without destruction of the barrier integrity.

Highlights

  • Survival of pediatric acute lymphoblastic leukemia (ALL) has dramatically improved over the last decades [1]

  • Extracellular vesicles released by the three leukemia cell lines SD-1 (BCP-ALL), Nalm-6 (BCP-ALL), and P12 (T-ALL) all presented with typical size of exosomes, and expressed exosomal markers including CD 63 and CD 81 (Supplementary Figure S1)

  • Small extracellular vesicles play a crucial role in tumor dissemination and central nervous system (CNS) infiltration may be facilitated by exosome-mediated transformation of target tissue in solid tumors, and in leukemias [5,16]

Read more

Summary

Introduction

Survival of pediatric acute lymphoblastic leukemia (ALL) has dramatically improved over the last decades [1]. Multiple mechanisms have been unraveled by which tumor-derived exosomes affect the formation of CNS metastases in numerous malignancies [12,13] These sum up, in the potential to modify tissues distant to the primary tumor site, and result in the formation of a “premetastatic niche”, facilitating circulating tumor cells to invade these tissues, and build new metastases, a mechanism that has been published in CNS infiltration by hematologic malignancies [14,15]. In this regard, Kinjyo and colleagues have recently described the impact of leukemia-derived exosomes on lymphoblast transmigration across the blood-brain barrier (BBB) in pediatric ALL. In this regard, varying microRNA expression profiles have been described in T-linage and B-cell precursor (BCP)-ALL, potentially contributing to the different clinical behavior of these ALL subtypes [17]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call