Abstract

To investigate the causative component for certain health outcomes, the associations between the properties of ambient particles and cause-specific mortality (all-cause, cardiovascular, and respiratory-related mortality) measured in Seoul, Korea, from January 1, 2013, to December 31, 2016, were evaluated with a quasi-Poisson generalized additive model (GAM). The total mass of PM10 and PM2.5 moderately affected respiratory-related mortality but had almost no impact on all-cause and cardiovascular-related mortality. Among PM2.5 mass compositions, ammonium sulfate, which is in generally 300-500nm as a secondary species, showed the most statistically significant effect on respiratory-related mortality at lag 4 (p < 0.1) but not for other mortalities. However, from the size-selective investigations, cardiovascular-related mortality was impacted by particle number concentrations (PNCs), particle surface concentrations (PSCs), and particle volume concentrations (PVCs) in the size range from 50 to 200nm with a statistically significant association, particularly at lag 1, suggesting that mass is not the only way to examine mortality, which is likely because mass and chemical composition concentrations are generally controlled by larger-sized particles. Our study suggests that the size-specific mortality and/or impacts of size-resolved properties on mortalities need to be evaluated since smaller particles get into the body more efficiently, and therefore, more diverse size-dependent causes and effects can occur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.