Abstract

Polylactide-co-glycolide (PLGA) nanoparticles are one of the most commonly explored biodegradable polymeric drug carriers for inhaled delivery. Despite their advantages as inhalable nanomedicine scaffolds, we still lack a complete understanding of the kinetics and major pathways by which these materials are cleared from the lungs. This information is important to evaluate their safety over prolonged use and enable successful clinical translation. This study aimed to determine how the size and charge of 3H-labeled PLGA nanoparticles affect the kinetics and mechanisms by which they are cleared from the lungs and their safety in the lungs. The results showed that lung clearance kinetics and retention patterns were more significantly defined by particle size, whereas lung clearance pathways were largely influenced by particle charge. Each of the nanoparticles caused transient inflammatory changes in the lungs after a single dose that reflected lung retention times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.