Abstract

The study focuses on the impact of different sets of single nucleotide polymorphisms (SNPs) selected from the available data set on prediction of genomewide breeding values (GBVs) of animals. Correlations between breeding values estimated as additive polygenic effects (EBVs) and GBVs as well as correlations between true breeding values (TBVs) and GBVs are used as major criteria for the comparison of different SNP selection schemes and GBV estimation models.The analysed data is the simulated data set from the XII QTL Workshop. In the analysis five different SNP data sets are considered. For prediction of EBVs a standard mixed animal model is applied, whereas GBVs are defined as the sum of additive effects of SNPs estimated for the different SNP data sets using model 1 with fixed SNPs effects, model 2 with fixed SNPs effects and a random additive polygenic effect, model 3 with a random effects of uncorrelated SNP genotypes.The additive polygenic and residual variance components estimated by the EBV model amount to 1.36 and 3.12, respectively. Differences between models are expressed by comparing the ranking of individuals based on EBV and on GBV and by correlations. Among 100 individuals with the highest EBVs, depending on a model and a data set, there are only between 11 and 37 individuals with the highest GBVs. The highest correlation between GBV and EBV amounts to 0.787 and is observed for model 3 with 3,328 SNPs selected based on their minor allele frequency, the lowest correlation of 0.519 is attributed to model 2 with 300 SNPs. Correlations between GBV estimates obtained from different models with the same number of SNPs range between 0.916 and 0. 998, whereas correlations between different SNP data sets using the same model fall under 0.850.These results indicate that successful application of high throughoutput SNP genotyping technologies for prediction of breeding values is a very promising approach, but before the method can be routinely applied further methodological improvements regarding model construction and SNP selection are required.

Highlights

  • The idea behind using high throughoutput single nucleotide polymorphism (SNP) microarray technology in cattle breeding industry is based on the assumption that the additive genetic merit of animals can be accurately predicted based on their genotypes at many single nucleotide polymorphisms (SNPs)

  • This study focuses on the impact of different sets of SNPs selected from the available data set of 6,000 SNPs on prediction of genomewide breeding values (GBVs) of animals

  • Correlations between breeding values estimated as additive polygenic effects (EBVs) using a standard mixed animal model, and GBVs are used as a major criterion for the comparison of different SNP selection schemes and different GBV estimation models

Read more

Summary

Introduction

The idea behind using high throughoutput single nucleotide polymorphism (SNP) microarray technology in cattle breeding industry is based on the assumption that the additive genetic merit of animals (mainly bulls) can be accurately predicted based on their genotypes at many SNPs. Correlations between breeding values estimated as additive polygenic effects (EBVs) using a standard mixed animal model, and GBVs are used as a major criterion for the comparison of different SNP selection schemes and different GBV estimation models

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.